ANALYSIS OF THE TWO-DIMENSIONAL TEMPERATURE
FIELD OF A BOUNDED CYLINDER WITH A PLANAR
INTERNAL HEAT SOURCE OF CONSTANT STRENGTH
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We obtain the two-dimensional nonstationary solution for a bounded cylinder with an in-
ternal source of constant strength for time~varying boundary conditions of the first kind,
Optimal dimensions of a specimen are determined on a theoretical basis (for the case
involving application to plates), and these agree, with sufficient accuracy, with those ob-
tained from the one-dimensional solutions. Thermophysical characteristics can be de-
termined from the two-dimensional computational relationships which are supplied.

One of the most involved problems in theoretical and applied studies of the thermophysical charac-
teristics of materials is that of estimating the reliability of the results obtained. A fundamental source
of systematic errors, arising in applying these or other methods for determining thermophysical charac-
teristics, consists in the fact that the majority of them are based onsolutions of the one-dimensional dif-
ferential equation of heat conduction with specific initial and boundary conditions. In actuality, the theo-
retical premises of unboundedness of the experimental specimens are not fulfilled.

The selection of optimal relationships among the dimensions of a test specimen, such that the one-
dimensionality of the temperature field is preserved with a specified accuracy without applying any adjust-
ment factors, is a problem associated with the solution of two- and three-dimensional heat conduction prob-
lems. Papers [1-5] have been devoted to this very problem. In [3] an analysis was given of the two-di-
mensional temperature field of a hollow cylinder with boundary conditions of the first, second, and third
kinds (using a quasistationary method). In [4, 5] the two-dimensional temperature field of a solid cylinder
was obtained for combined boundary conditions constant with time.

The aim of the present paper is to furnish a theoretical basis for optimizing the dimensions of a
specimen (for the case involving application to plates) when stationary and quasistationary methods are
used for determining the thermophysical characteristics of materials,

We are given a bounded cylinder of height 2h and diameter 2R (coordinate origin at the center),
which is initially in thermal equilibrium with the surrounding medium, i.e., the temperature of the cylinder
is equal to the temperature T, of the surrounding medium. At the initial instant a source of specific power
q begins to operate in the central plane (z = 0), the lateral surface begins to heat up at the constant rate
by, and the end surfaces begin to heat up at the constant rate by. It is required to find an expression for
the temperature field of the bounded cylinder, i.e., we seek to solve the differential equation of heat con-
duction
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for the following initial and boundary conditions:

T(r, 2, 0) = T, = const,
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The solution of the given problem, obtained by the method of Hankel and Laplace transformations, can be
represented in the form

pd" H p‘nll (”n) ch an

n=|

' ® 1(un )chun
0 —Fohl' ol—oy ML R R J

= 1( —r—)ch Z
CB (1_ re 8“10”1LR H’ni)

4k R amd (k) chipk
I pn ) sh n .
Lz 1 —e¢, \1 (” R K _ 1—08 \ Iy (un R )chun R shp,k
h R n/A=l ”,21[ 1 (p/n) ch p‘n }Li[l (p,n) ch? Mnk

n—l
. m+l 42 252 o <
NN R (un 7 Jeosi,

P’nl (“’n) }"m, (;‘ln ’l“ M,zzkz)

_|_

n=l m=1

( ) shp, ( k— _Z_)
¢ exp[— (A2, + k)] Fo, - A AR R

k pdh A ;21[1 (”’n) Ch H‘n.k
K (— m+1[ p.,, R )sin?»m( 1——%)
=3 :
- L exp|— (Am -+ p2k?)] Fo,. (3)
s (o) (2 - 2% (ho o+ 41 e

m=]

Equation (3) has its simplest form when b; =b, = 0. In this case the surfaces of the bounded cylinder
are maintained at a constant temperature, equal to the initial temperature, i.e.,
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Figure 1 displays curves showing the variation of 6/ Ki}, with the Fourier number Foy, calculations
being made for the center of the bounded cylinder for various ratios of the parameter k. All calculations
were made on the electronic digital computer "Promin'." These curves may be compared with curve 1,
constructed for the center of an unbounded plate [6]. The general solution for an unbounded plate is readily
obtained from expression (4) by letting R — <. In the stationary thermal state, approached theoretically as
Fop — = (with an accuracy of 0.6%, in practice, when Foy =2, with relation to the ideal stationary state),
the deviation of the corresponding function ¢/ Kip from the curve 1 reaches its maximum value, wherein
the magnitude of this deviation depends on the value of the parameter k (see Fig. 1). We have taken the
most unfavorable case of heat transfer on the lateral surface of the plate (Bi — «), For smaller values of
the Biot number these deviations are less [4]. From Fig. 1 it is evident that the use of specimens with a
parameter value of k = 1/4 will guarantee sufficient accuracy toward satisfying the condition of unbounded-
ness of the specimen in its central region.
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8 = Before going on to consider the more general
Kip / \ \ \ case by #»hy #0, g =0, it is appropriate to analyze
25 / LNV W the temperature field of the unbounded plate. The
' / \ R general solution for the unbounded plate may be ob-
12345 tained from the solution (3) by putting by = 0 (cg
\ =0) and letting R — <, This solution coincides com-
pletely with the solution given in {6], and for Bi — «
94 it has the form
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Fig. 1. Variation of 6/ Kip with the Fourier num- Ki o 2 )
ber Fo - —g —k E — cos h, — exp(— AL Fo).  (5)
h at the center of the bounded cylinder for Pd, A2 m m 1O,
various values of k: 1) center of an unbounded m=l
plate and k =1/5 (with an accuracy of 0.8%); 2) k
=1/4 (deviation from curve 1 is 1.4%); 3) k =1/3 Tigure 2 shows how the generalized function
(deviation from curve 1 is 4.2%); 4) k =1/2 (de- 9/ PdpFop, varies with the Fourier number Fop, at
viation from curve 1 is 15%); 5) k =1 (deviation the center of an unbounded plate (the plane in which
from curve 1 is 52%). a source of constant strength is operative) for vari-

ous ratios of the Kirpichev and Predvoditelev num-
bers formulated on the basis of Eq. (5). The parameter Kip/ Pdy characterizes the relationship between
the specific thermal flow at the center and that on the surface of the plate in the quasistationary thermal
regime. It is not difficult to show that for Kij/ Pdy = 0.5 the indicated flows are equal (the regime of initial
adiabatic heating of the plate: curve 4). The temperature distribution through the plate thickness in this
case is parabolic, the vertex of the parabola being located at z =h/2. For the values Kip/ Pdy < 0.5, we
have the nonsymmetric heating condition in which the vertex of the parabola is displaced, relative to the
point z = h/2, toward the center as the ratio Kip/ Pdy, is made smaller. In this case, to determine the
thermophysical characteristics it is necessary to record temperatures at three points of the specimen,
The case for which the ratio Kih/ Pdp > 0.5 is of no practical interest since then the thermal flow in the
plane z = 0 will predominate over the thermal flow formed on the surface of the plate, and the quasista-
tionary regime appears for sufficiently large values of the Fourier number. From Fig. 2 it is evident that
for various values of the ratio Kip/ Pdp, the generalized function 6/ PdyFop —~ 1 as Fop, — «. In accor-
dance with this, the time of appearance of the quasistationary thermal state varies. Thus, for example,
the quasistationary regime, with an accuracy within 1%, for values of the ratio Kiy/ Pdy equal to 0.5, 0.2,
0.1, 0.001, sets in for Fourier number Fop values equal, respectively, to 1, 1.4, 1.5, 1.6. Consequently,
in the case of initially adiabatic heating the quasistationary regime sets in much sooner in comparison
with the nonsymmetric heating of the plate. The way in which the generalized function 6/ PdypFoy, varies at
the center of the plate for small Fourier numbers can be explained by a change in the rate of heating in the
regime preceding the quasistationary regime.

In Fig. 3 we present two-dimensional curves showing the variation of the function 9/ PdpFoy with the
Fourier number Foy at the center of a bounded cylinder (disk) for various values of cg and k, the curves
being based on the solution (3). The plots are drawn for the ratio Kiy/ Pdy = 0.1. A comparison may be
made of these curves with the one-dimensional curve 4. The maximum deviation between the one- and two-
dimensional generalized functions occurs for the stationary state (quasistationary regime). For specimens
with the ratio k =1/4, 1/3, 1/2, 1, the magnitude of these deviations in the most unfavorable condition of
the experiment, cg =0 (the case corresponding to heat transfer on the lateral surface of the bounded cyl-
inder when Bi — <) amounts to 0.85, 3.67, 19, 68%, respectively, for Fop = 3. With increasing Fourier
number the size of these deviations increases. However for k = 1/4 this deviation amounts to 1.6% for
Fop =10. For cg =1 these deviations are equal to 0.2, 1.4, 3.1, 9.7%, respectively, and remain constant
as the Fourier number increases. For other values of cp these deviations, for a specific k-ratio, will lie
between the limits mentioned above.

Thus by studying specimens in the form of plates with a ratio of k =1/4, we can guarantee sufficient
accuracy in satisfying the infinite plate condition at its central region when use is made of the quasista-
tionary method for determining the thermophysical characteristics of materials.



SN

o A

R Tl
IS
[~

2

s
/)/k’l

2877/

g

0.8

1.6 2.4 Foj,

Fig. 2. Variation of 6§/ Pd,Fop, with the Fourier number
Foy, for various values of Kiy/ Pdp, at the center of an
unbounded plate: 1) Kiy/ Pdy, = 0.1; 2) 0.04; 3) 0.01; 4)

0.5; 5) 0.25.
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Fig. 3. Variation of 6/ PdyFoy, with the Fourier num-
ber Fop for various values of cg and k at the center
of a bounded eylinder (disk): 1) k=1, cg=1;2) k=1
/2, cg =1;3) k=1/3, cp =1; 4) center of unbounded
plate and k =1/4, cg = 0 (within 0.85%); 5) k =1/3,
cg=0;6) k=1/2, eg=0; ) k=1, cg =0 (Ki/ Pdy

=0.1).

TABLE 1. Values of the Constants Cy(k), Cy(k),
C3(kK), Cyk)

+ |

-

l Cs (k)

|

Cy (k) C, (k) ‘ Calk)
I 1,7412 2,5748 0,7579 3,9430
172 1,1159 2,0827 0,9516 3,9674
1/3 1,0268 2,0215 0,9902 3,9973
1/4 1,0054 2,0070 0,9933 3,9995

It is a known fact that in the quasistationary
thermal regime with an internal heat source of constant
strength, both the thermal diffusivity and thermal
conductivity of 2 material can be determined. We
now obtain two~-dimensional computational formulas
for the indicated characteristics for the case in which
the heating rates on the ends and on the lateral sur-
face are equal. We assume, for simplicity, that the
temperature is measured at the points with coordi-

patesr =0, z=0;r =0, z=h/2; r =0, z =h. Upon finding the value of the corresponding difference of
temperatures from expression (3) for b; =b, = b between the two points indicated, and then solving these
equations simultaneously, we obtain
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where ATh’Og ATh/z,o are, respectively, the differences of temperatures between the points with coordi-
natesr =0, z=h;r=0, z=0and r =0, z=h/2;r =0, z=0. Ck), Cyk), Cy(k), Cy(k) are constants

for a given k~ratio. Values of these constants, obtained on the electronic digital computer "Promin' " for
certain k~ratios, are shown in Table 1. The corresponding one-dimensional formulas may be found in [5].

From Table 1 it is evident that for k =1/4 the values of the constants appearing before the corre-
sponding temperature drops are, with sufficient accuracy, close to the one-dimensional values. In con-
clusion, it should be noted that in the quasistationary thermal regime assignment of a constant heating rate
on the plate surfaces is equivalent to the assignment of a constant thermal flow. Therefore all the con-
clusions relating to the character of 2 change in the temperature fields hold for this case also.

NOTATION
T, T are the temperature of any point of finite cylinder and initial temperature;
a is the thermal diffusivity;
A is the thermal conductivity;
R is the cylinder radius;
h is the half-height of cylinder;
by, by are the rate of heating on end face and side of finite cylinder, deg/sec;
T, Z are the current coordinates of finite cylinder;
T is the time;
Is Lt are the Bessel functions of zero and first order of first kind;
g are the roots of Bessel functionof zeroth order of first kind;
k=h/R is the parameter characterizing relationship betweenheight and diameter of cylinder;
Fo =at/h? is the Fourier number;
Pdy =bh?/aT,  is the Predvoditelev number;
Kiy =qh/AT, is the Kirpichev number;
CRB is the parameter characterizing relationship between heating rates on cylinder surfaces;
q is the specific heat flux in plane (z = 0);

A = @m —1)(m/2);
6 = (T —Ty)/ Tg-
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