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We obtain the two-dimensional  nonstat ionary solution for  a bounded cylinder with an in-  
ternal  source  of constant s trength for t ime-vary ing  boundary conditions of the f i rs t  Mnd. 
Optimal dimensions of a specimen a re  determined on a theoret ical  basis  (for the case 
involving application to plates), and these agree,  with sufficient accuracy ,  with those ob- 
tained f rom the one-dimensional  solutions. Thermophysical  charac te r i s t i cs  can be de- 
termined f rom the two-dimensional  computational relat ionships which a re  supplied. 

One of the most  involved problems in theoret ical  and applied studies of the thermophysical  cha rac -  
te r i s t ics  of mate r ia l s  is that of est imating the reliabil i ty of the resul ts  obtained. A fundamental source 
of sys temat ic  e r r o r s ,  a r is ing in applying these or other methods for determining thermophysical  cha rac -  
te r i s t ics ,  consis ts  in the fact that the major i ty  of them are  based on solutions of the one-dimensional  dif- 
ferential  equation of heat conduction with specific initial and boundary conditions. In actuality, the theo- 
re t ica l  p remises  of unboundedness of 'the experimental  specimens a re  not fulfilled. 

The select ion of optimal relat ionships among the dimensions of a test  specimen, such that the one-  
dimensionali ty of the t empera tu re  field is p reserved  with a specified accuracy  without applying any adjust -  
ment factors ,  is a problem associa ted with the solution of two- and three-dimensional  heat conduction prob-  
lems.  Papers  [1-5] have been devoted to this very  problem. In [3] an analysis  was given of the two-di-  
mensional  t empera tu re  field of a hollow cylinder with boundary conditions of the f irst ,  second, and third 
kinds (using a quasis ta t ionary method). In [4, 5] the two-dimensional  tempera ture  field of a solid cylinder 
was obtained for combined boundary conditions constant with time. 

The aim of the present  paper is to furnish a theoret ical  basis for optimizing the dimensions of a 
specimen (for the case involving application to plates) when stat ionary and quasis ta t ionary methods are  
used for determining the thermophysica l  charac te r i s t i c s  of materials .  

We are  given a bounded cylinder of height 2h and diameter  2R (coordinate origin at the center),  
which is initially in thermal  equilibrium with the surrounding medium, i.e., the tempera ture  of the cylinder 
is equal to the tempera ture  T O of the surrounding medium. At the initial instant a source of specific power 
q begins to operate in the central  plane (z = 0), the lateral  surface begins to heat up at the constant ra te  
b2~ and the end sur faces  begin to heat up at the constant rate b 1. It is required to find an expression for 
the tempera ture  field of the bounded cylinder,  i.e., we seek to solve the differential equation of heat con- 
duction 

1 OT 1 0 l r OT t + c~T 
a 0~ -- r & / Or } Oz ~ -  (1) 

for the following initial and boundary conditions: 

T (r, z, 0) = To ~ const, 
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T (r, h, "r) --- T O -1-bl.~ , 
T (R, z, "c) = To -]- b,~, 

_ _  )~ OT (r, O, T) --- =q, 
& 

OT (O, z, x) --O. 
Or 

(2) 

The solut ion of the g iven prob lem,  
r e p r e s e n t e d  in the f o r m  

z 1 - -  c B .q. 
h k 

obtained by the method of Hankel and Lap lace  t r a n s f o r m a t i o n s ,  can  be 

(r) ] 
pd h- ~= F% %-i- 2(1 - -  cB) . 7t~-/~-(~,5~77~fl - 

ce 1 8 
4k ~ R ~ ~ 31 Ix~ 1 (IX.) ch Ix,,k 

r ) z 
, ~ - ~ I  o . . . .  IX.--/~- sh~,, /~ l _ c z  Z 

IX~[1. k 
n~l n~l 

, 4Z Z 
n = l  m ~ l  

Io ( ix,,--~- ) ch lx,, - R  sh.ix,~k 

IX211 (ta~) ch 2 Ix~k 

(--1)m+'(~2 @cBix~le2)Io(ix,~-~-)cos~,. h 

• exp [--(~2 + Ix,~k~)] F% -t= 

Pdh n=l m=l 

2 I% ~ l  ro Ix~-k- sh Ix~ k -- 

= IxT, , (ixn) ch Ix,,/e 

(--1)'n+l Io (IX,,--~-) sin ~,., ( I - - ~ - )  

2 
Ix,Jx (~)  (z,., + ~ k  2) 

exp [--- (k,~ + Ix~k2)l Foh. (3) 

Equat ion  (3) has  i ts  s i m p l e s t  f o r m  when b 1 = b 2 = 0. In this  case  the s u r f a c e s  of the bounded cy l inder  
a r e  main ta ined  a t  a cons tan t  t e m p e r a t u r e ,  equal to the init ial  t e m p e r a t u r e ,  i .e . ,  

r 

n~l  

- -  4 Kih ~ ~ lx,~I~ (IX,J ( . ,  -t- Ixnk ) ,~=~ ~=1 Z 2 z ,z exp [ - -  (Xz -k Ix~k~)] F%. (4) 

F igu re  1 d i sp lays  cu rves  showing the va r i a t i on  of 0 / K i  h with the F o u r i e r  number  FOh, ca lcu la t ions  
being made  fo r  the cen te r  of the bounded cy l inder  for  va r ious  ra t ios  of the p a r a m e t e r  k. All ca lcu la t ions  
w e r e  made  on the e l ec t ron ic  digital  c o m p u t e r  n P r o m i n ' . "  These  cu rves  may  be c o m p a r e d  with curve  1, 
cons t ruc t ed  for  the cen te r  of an unbounded plate [6]. The gene ra l  solut ion for  an  unbounded plate is r ead i ly  
obtained f r o m  e x p r e s s i o n  (4) by let t ing R ~ ~. In the s t a t iona ry  t h e r m a l  s ta te ,  approached  theo re t i ca l ly  as  
Fo h ~ ~ (with an  a c c u r a c y  of 0.6%, in p rac t i ce ,  when Fo h = 2, with r e l a t i on  to the ideal  s t a t i ona ry  state) ,  
the devia t ion  of the c o r r e s p o n d i n g  funct ion 0 / K i h  f r o m  the cu rve  1 r e a c h e s  its m a x i m u m  value,  whe re in  
the magni tude  of this devia t ion  depends on the value  of the p a r a m e t e r  k (see Fig. 1). We have taken the 
m o s t  unfavorab le  case  of heat  t r a n s f e r  on the l a t e ra l  su r f ace  of the plate (Bi ~ ~). F o r  s m a l l e r  va lues  of 
the Biot number  these  devia t ions  a r e  l e s s  [4]. F r o m  Fig.  1 it is  evident that  the use  of s p e c i m e n s  with a 
p a r a m e t e r  value  of k = 1 / 4  will gua ran tee  suff ic ient  a c c u r a c y  toward  sa t i s fy ing  the condi t ion of unbounded-  
nes s  of the s p e c i m e n  in i ts  cen t r a l  region.  

500 



0 

Ki h 

o,8 ! 

r ' l l  

0 0.8 1.6 2.4 F ~  

Fig. 1. Variat ion of 0 /Ki  h with the Four ie r  num- 
ber  Fo h at the center  of the bounded cylinder for 
var ious values of k: 1) center  of an unbounded 
plate and k = 1 / 5  (with an accuracy  of 0.8%); 2) k 
= 1 / 4  (deviation f rom curve I is 1.4%); 3) k = 1 / 3  
(deviation f rom curve 1 is 4.2%); 4) k = 1 /2  (de- 
viation f rom curve 1 is 15%); 5) k = 1 (deviation 
f rom curve 1 is 52%). 

Before going on to consider the more general 

case b I ~ b 2 ~ 0, q ~ 0, it is appropriate to analyze 

the temperature field of the unbounded plate. The 

general solution for the unbounded plate may be ob- 

tained from the solution (3) by putting b 2 = 0 (c B 

= 0) and letting R ~ ~. This solution coincides com- 

pletely with the solution given in [6], and for Bi -- oo 

it has the form 

Pdh - - ~ -  1 - -  §  1 z 

~ (-- 1) ' '+' z ,, + 2 a cos ).., -h- exp (-- ~.7,, Fo h) 

- -  2 ~ R k  ~- !  ~ cos,v,~,~- exp(-- Fob). 
Pdn ~ ~m 

(5) 

Figure  2 shows how the general ized function 
0 / P d h F o  h var ies  with the Four ier  number Fo h at 
the center  of an unbounded plate (the plane in which 
a source  of constant s trength is operative) for v a r i -  
ous rat ios  of the Kirpichev and Predvoditelev num- 

hers formulated on the basis of Eq. (5). The parameter Kih/Pd h characterizes the relationship between 

the specific thermal flow at the center and that on the surface of the plate in the quasistationary thermal 

regime. It is not difficult to show that for Kih/Pd h = 0.5 the indicated flows are equal (the regime of initial 

adiabatic heating of the plate: curve 4). The temperature distribution through the plate thickness in this 

case is parabolic, the vertex of the parabola being located at z = h/2. For the values Kih/Pd h < 0.5, we 

have the nonsymmetric heating condition in which the vertex of the parabola is displaced, relative to the 

point z = h/2, toward the center as the ratio Kih/Pd h is made smaller. In this case, to determine the 

thermophysical characteristics it is necessary to record temperatures at three points of the specimen. 

The case for which the ratio Kih/Pd h > 0.5 is of no practical interest since then the thermal flow in the 
plane z = 0 will predominate over the thermal flow formed on the surface of the plate, and the quasista- 

tionary regime appears for sufficiently large values of the Fourier number. From Fig. 2 it is evident that 

for various values of the ratio Kih/Pdh, the generalized function 0/PdhFo h ~ i as Fo h ~ ~. In accor- 
dance with this, the time of appearance of the quasistationary thermal state varies. Thus, for example, 

the quasistationary regime, with an accuracy within l~c, for values of the ratio Kih/Pd h equal to 0.5, 0.2, 

0.i, 0.001, sets in for Fourier number Foh values equal, respectively, to I, 1.4, 1.5, 1.6. Consequently, 

in the case of initially adiabatic heating the quasistationary regime sets in much sooner in comparison 

with the nonsymmetric heating of the plate. The way in which the generalized function 0/PdhFo h varies at 

the center of the plate for small Fourier numbers can be explained by a change in the rate of heating in the 
regime preceding the quasistationary regime. 

In Fig. 3 we present two-dimensional curves showing the variation of the function 0/PdhFo h with the 

Fourier number Fo h at the center of a bounded cylinder (disk) for various values of c B and k, the curves 

being based on the solution (3). The plots are drawn for the ratio Kih/Pd h = 0.i. A comparison may be 

made of these curves with the one-dimensional curve 4. The maximum deviation between the one- and two- 

dimensional generalized functions occurs for the stationary state (quasistationary regime). For specimens 

with the ratio k = i/4, 1 / 3, i/2, i, the magnitude of these deviations in the most unfavorable condition of 

the experiment, c B = 0 (the case corresponding to heat transfer on the lateral surface of the bounded cyl- 

inder when Bi -- ~) amounts to 0.85, 3.67, 19, 68%, respectively, for Foh = 3. With increasing Fourier 

number the size of these deviations increases. However for k = 1/4 this deviation amounts to 1.6~c for 
Foh = I0. For c B = 1 these deviations are equal to 0.2, 1.4, 3.1, 9.7%, respectively, and remain constant 

as the Fourier number increases. For other values of c B these deviations, for a specific k-ratio, will lie 
between the limits mentioned above. 

Thus by studying specimens in the form of plates with a ratio of k = 1/4, we can guarantee sufficient 
accuracy in satisfying the infinite plate condition at its central region when use is made of the quasista- 
tionary method for determining the thermophysical characteristics of materials. 
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Fig .  2. V a r i a t i o n  of  O / P d h F o  h with  the  F o u r i e r  n u m b e r  
Foh  fo r  v a r i o u s  v a l u e s  of K i h / P d  h a t  the  c e n t e r  of an  
unbounded p la te :  1) K i h / P d  h = 0.1; 2) 0.04; 3) 0.01; 4) 
O.5; 5) O.25. 
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Fig .  3. V a r i a t i o n  of 0 / P d h F o  h wi th  the F o u r i e r  n u m -  
b e r  F o  h fo r  v a r i o u s  v a l u e s  of c B and k a t  the  c e n t e r  
of a bounded c y l i n d e r  (disk):  1) k = 1, c B = 1; 2) k = 1 
/ 2 ,  c B = 1; 3) k = 1 / 3 ,  c B = 1; 4) c e n t e r  of unbounded 
p la te  and  k = 1 / 4 ,  c B = 0 (within 0.85%); 5) k = 1 / 3 ,  
c B = 0 ; 6 )  k = l / 2 ,  c B = 0 ; 7 )  k = l ,  c B = 0  ( K i / P d  h 
= 0.1). 

T A B L E  1. V a l u e s  of the  Cons t an t s  Cl(k),  C2(k), 

Ca(k), C4(k) 

k Cz (k) C= (k) C~ (k) C4(k) 

l 
1/2 
1/3 
1/4 

1,7412 
1,1159 
1,0268 
1,0054 

2,5748 
2.0827 
2,0215 
2,0070 

0,7579 
0,9516 
0,9902 
0,9933 

3,9430 
3,9674 
3,9973 
3,9995 

It i s  a known fac t  tha t  in the  q u a s i s t a t i o n a r y  
t h e r m a l  r e g i m e  wi th  a n  i n t e r n a l  hea t  s o u r c e  of c o n s t a n t  
s t r e n g t h ,  both the  t h e r m a l  d i f fu s iv i t y  and t h e r m a l  
conduc t iv i t y  of a m a t e r i a l  can  be  d e t e r m i n e d .  We 
now ob ta in  t w o - d i m e n s i o n a l  c o m p u t a t i o n a l  f o r m u l a s  
fo r  the  i n d i c a t e d  c h a r a c t e r i s t i c s  fo r  the  c a s e  in  which  
the  hea t ing  r a t e s  on the ends  and on the l a t e r a l  s u r -  
f a c e  a r e  equal .  W e  a s s u m e ,  fo r  s i m p l i c i t y ,  tha t  the 
t e m p e r a t u r e  i s  m e a s u r e d  a t  the  po in ts  wi th  c o o r d i -  

Dates r = 0.. z = O; r = O0 z = h / 2 ;  r = O, z = h. Upon f inding the va lue  of the  c o r r e s p o n d i n g  d i f f e r e n c e  of 
t e m p e r a t u r e s  f r o m  e x p r e s s i o n  (3) fo r  b t = b~ = b be tween  the two poin ts  i n d i c a t e d ,  and then s o l v i n g  t h e s e  
equa t i ons  s i m u l t a n e o u s l y ,  we ob t a in  

bh ~ 

a == 4 [C, (k) kTh, o - -  C~ (k) AT~_ 0} ' 

s  q'~ 
C a (k) ATh. 0 - -  C 4 (k) AT  h ' 

-.g-,o 

(6) 

(7) 

502 



where ATh, o, ATh/2,  0 are ,  respect ively,  the differences of tempera tures  between the points with coordi -  
nates r = 0, z = h; r = 0, z = 0 and r = 0, z = h / 2 ;  r = 0, z = 0. Cl(k), C2(k), C3(k), C4(k) are  constants 
for a given k-rat io.  Values of these constants,  obtained on the electronic digital computer ' tPromin '  ,r for 
cer ta in  k- ra t ios ,  a re  shown in Table 1. The corresponding one-dimensional  formulas  may be found in [5]. 

F r o m  Table 1 it is evident that for k = 1 /4  the values of the constants appearing before the c o r r e -  
sponding tempera tu re  drops are ,  with sufficient accuracy ,  close to the one-dimensional  values. In con- 
clusion, it should be noted that in the quasistationary thermal regime assignment of a constant heating rate 

on the plate surfaces is equivalent to the assignment of a constant thermal flow. Therefore all the con- 

clusions relating to the character of a change in the temperature fields hold for this case also. 

T, T o 

R 
h 

bl, b2 
r ,  z 

T 

Io, II 

Pn 
k = h/IR 

Fo h = a ~ / h  2 
pd h = b~h2/aT 0 
Ki h = qh/%T 0 
CB 
q 

N O T A T I O N  

are  the tempera ture  of any point of finite cylinder and initial temperature ;  
is the thermal  diffusivity; 
is the thermal  conductivity; 
is the cylinder radius;  
is the half-height of cylinder;  
a re  the rate  of heating on end face and side of finite cylinder,  d e g / s e c ;  
a re  the cur rent  coordinates of finite cylinder; 
is the t ime; 
are  the Bessel  functions of zero and f i rs t  order  of f i rs t  kind; 
a r e  the roots  of Bessel  function o f zeroth o rder  of f i rs t  kind; 
is the parameter  charac ter iz ing  relationship betweenheightand diameter  of cylinder;  
is the Four ie r  number;  
is the Predvoditelev number;  
is the Kirpichev number;  
is the pa ramete r  charac ter iz ing  relat ionship between heating" ra tes  on cylinder surfaces;  
is the specific heat flux in plane (z = 0); 

~ m  = ( 2 m  - 1 ) ( ~ r / 2 ) ;  

0 = (T - T 0 ) / T 0 .  
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